If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+20x-120=0
a = 1; b = 20; c = -120;
Δ = b2-4ac
Δ = 202-4·1·(-120)
Δ = 880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{880}=\sqrt{16*55}=\sqrt{16}*\sqrt{55}=4\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{55}}{2*1}=\frac{-20-4\sqrt{55}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{55}}{2*1}=\frac{-20+4\sqrt{55}}{2} $
| 8-(13-7k/6)=14 | | 4(x + 5) = x + 41 | | 4x + 5 = x + 41 | | 4x + 5 = 41 | | 8(x+8)+12=172 | | 8-4y+3y=5 | | 1/5-(x+1)/7=x/5 | | 8-4y=3y+5 | | 3(x-4)+9=20 | | 5t²+14t+98=0 | | 10(x+2)+2=30 | | 2/3x+1=15/6 | | 2y^2-20-48=0 | | 2m-5/3m+6/4m²-10m/9m²+6m=0 | | 2m-5/3m+6=0/4m²-10m/9m²+6m=0 | | 4x-12+2x+50=180 | | 24/t=63 | | m-8=-113 | | y+8=-23 | | 7y=7=35 | | 10x–6=24 | | 36=5y+1= | | 148=0.8(220-a) | | 3×x=3000 | | x+8.2=7.2 | | x=8.2=7.2 | | x−−2.1=4.1 | | 1/1-x=0+2/1+x=0 | | 12.5+x=3.5 | | 9t/7=70 | | 62.9+r=44r/7 | | x+-6.3=-5.9 |